Pii: S0893-6080(97)00097-x

نویسندگان

  • Franco Scarselli
  • Ah Chung Tsoi
چکیده

In this paper, we present a review of some recent works on approximation by feedforward neural networks. A particular emphasis is placed on the computational aspects of the problem, i.e. we discuss the possibility of realizing a feedforward neural network which achieves a prescribed degree of accuracy of approximation, and the determination of the number of hidden layer neurons required to achieve this accuracy. Furthermore, a unifying framework is introduced to understand existing approaches to investigate the universal approximation problem using feedforward neural networks. Some new results are also presented. Finally, two training algorithms are introduced which can determine the weights of feedforward neural networks, with sigmoidal activation neurons, to any degree of prescribed accuracy. These training algorithms are designed so that they do not suffer from the problems of local minima which commonly affect neural network learning algorithms. q 1998 Elsevier Science Ltd. All rights reserved Keywords—Approximation by neural networks, Approximation of polynomials, Constructive approximation, Feedforward neural networks, Multilayer neural networks, Radial basis functions, Universal approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An evaluation of standard retrieval algorithms and a binary neural approach

In this paper we evaluate a selection of data retrieval algorithms for storage efficiency, retrieval speed and partial matching capabilities using a large Information Retrieval dataset. We evaluate standard data structures, for example inverted file lists and hash tables, but also a novel binary neural network that incorporates: single-epoch training, superimposed coding and associative matchin...

متن کامل

Pii: S0893-6080(97)00012-9

Kohonen’s learning vector quantization (LVQ)is modifiedby attributingtrainingcountersto eachneuron, whichrecordits trainingstatistics.Duringtraining,thisallowsfor dynamicself-allocationof theneuronsto classes.In the classificationstage trainingcountersprovidean estimateof the reliabilityof classificationof the singleneurons, whichcan be exploitedto obtaina substantiallyhigherpurity of classi$ca...

متن کامل

Regularization with a Pruning Prior

We investigate the use of a regularization prior and its pruning properties. We illustrate the behavior of this prior by conducting analyses both using a Bayesian framework and with the generalization method, on a simple toy problem. Results are thoroughly compared with those obtained with a traditional weight decay. Copyright 1997 Elsevier Science Ltd.

متن کامل

Precision Requirements for Closed-Loop Kinematic Robotic Control Using Linear Local Mappings

Neural networks are approximation techniques that can be characterized by adaptability rather than by precision. For feedback systems, high precision can still be acquired in presence of errors. Within a general iterative framework of closed-loop kinematic robotic control using linear local modeling, the inverse Jacobian matrix error and the maximum length of the displacement for which the line...

متن کامل

Estimates of the Number of Hidden Units and Variation with Respect to Half-Spaces

We estimate variation with respect to half-spaces in terms of "flows through hyperplanes". Our estimate is derived from an integral representation for smooth compactly supported multivariable functions proved using properties of the Heaviside and delta distributions. Consequently we obtain conditions which guarantee approximation error rate of order O by one-hidden-layer networks with n sigmoid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998